A simple formula for the second-order subdifferential of maximum functions
نویسندگان
چکیده
We derive a simple formula for the second-order subdifferential of the maximum of coordinates which allows us to construct this set immediately from its argument and the direction to which it is applied. This formula can be combined with a chain rule recently proved by Mordukhovich and Rockafellar [9] in order to derive a similarly simple formula for the extended partial second-order subdifferential of finite maxima of smooth functions. Analogous formulae can be derived immediately for the full and conventional partial secondorder subdifferentials.
منابع مشابه
Partial second-order subdifferentials of -prox-regular functions
Although prox-regular functions in general are nonconvex, they possess properties that one would expect to find in convex or lowerC2 functions. The class of prox-regular functions covers all convex functions, lower C2 functions and strongly amenable functions. At first, these functions have been identified in finite dimension using proximal subdifferential. Then, the definition of prox-regula...
متن کاملConvex Generalized Semi-Infinite Programming Problems with Constraint Sets: Necessary Conditions
We consider generalized semi-infinite programming problems in which the index set of the inequality constraints depends on the decision vector and all emerging functions are assumed to be convex. Considering a lower level constraint qualification, we derive a formula for estimating the subdifferential of the value function. Finally, we establish the Fritz-John necessary optimality con...
متن کاملSecond-order Growth, Tilt Stability, and Metric Regularity of the Subdifferential
This paper sheds new light on several interrelated topics of second-order variational analysis, both in finite and infinite-dimensional settings. We establish new relationships between second-order growth conditions on functions, the basic properties of metric regularity and subregularity of the limiting subdifferential, tilt-stability of local minimizers, and positive-definiteness/semidefinite...
متن کاملClarke Subgradients for Directionally Lipschitzian Stratifiable Functions
Using a geometric argument, we show that under a reasonable continuity condition, the Clarke subdifferential of a semi-algebraic (or more generally stratifiable) directionally Lipschitzian function admits a simple form: the normal cone to the domain and limits of gradients generate the entire Clarke subdifferential. The characterization formula we obtain unifies various apparently disparate res...
متن کاملSensitivity of Optimal Solutions to Control Problems for Second Order Evolution Subdifferential Inclusions
In this paper the sensitivity of optimal solutions to control problems described by second order evolution subdifferential inclusions under perturbations of state relations and of cost functionals is investigated. First we establish a new existence result for a class of such inclusions. Then, based on the theory of sequential [Formula: see text]-convergence we recall the abstract scheme concern...
متن کامل